Nanosecond laser systems

Nanosecond lasers
Fixed wavelength

Fixed wavelength nanosecond lasers

ModelRepetition ratePulse durationMax pulse energySpecial feature
10 – 2500 Hz<10 ns4 mJ at 1064 nmCompact and robust
100 Hz3 – 6 ns190 mJ at 1064 nmDiode pumped only
20 Hz3 – 6 ns1100 mJ at 1064 nmVersatile, compact nanosecond laser
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

Effects of pressure and substrate temperature on the growth of Al-doped ZnO films by pulsed laser deposition

R. Kek, K. Tan, C. H. Nee, S. L. Yap, S. F. Koh, A. K. B. H. M. Arof et al., Materials Research Express 7 (1), 016414 (2020). DOI: 10.1088/2053-1591/ab62f8.

Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass

E. Stankevičius, M. Garliauskas, L. Laurinavičius, R. Trusovas, N. Tarasenko, and R. Pauliukaitė, Electrochimica Acta 297, 511-522 (2019). DOI: 10.1016/j.electacta.2018.11.197.

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

M. W. Hoorens, M. Medved’, A. D. Laurent, M. Di Donato, S. Fanetti, L. Slappendel et al., Nature Communications 10 (1), 2390 (2019). DOI: 10.1038/s41467-019-10251-8.

Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model

K. Kratkiewicz, R. Manwar, A. Rajabi‑Estarabadi, J. Fakhoury, J. Meiliute, S. Daveluy et al., Sensors 19 (12), 2815 (2019). DOI: 10.3390/s19122815.

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov et al., AIP Advances 8 (10), 105003 (2018). DOI: 10.1063/1.5048288.

Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source

P. Wachulak, A. Bartnik, and H. Fiedorowicz, Scientific Reports 8 (1), 8494 (2018). DOI: 10.1038/s41598-018-26909-0.

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

M. G. Ayele, P. W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik,  Wegrzynski et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 411, 35-43 (2017). DOI: 10.1016/j.nimb.2017.03.082.

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos et al., in X-ray Lasers and Coherent X-ray Sources: Development and Applications, A. Klisnick, and C. S. Menoni, eds. (SPIE, 2017), pp. 1024315. DOI: 10.1117/12.2265984.

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

C. Suzuki, F. Koike, I. Murakami, N. Tamura, S. Sudo, E. Long et al., Journal of Physics: Conference Series 583 (1), 012007 (2015). DOI: 10.1088/1742-6596/583/1/012007.

Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

Y. E. Krasik, and J. G. Leopold, Physics of Plasmas 22 (8), 083109 (2015). DOI: 10.1063/1.4928580.

1

2

High intensity nanosecond laser systems

ModelRepetition ratePulse durationMax pulse energySpecial feature
10 Hz2  – 25 ns10 JHigh energy Single Longitudinal Mode (SLM) Nd:YAG lasers
10 Hz5 ± 1 ns10 JHigh energy Multi-Mode Nd:YAG lasers
1 kHz2 – 500 ns5 JHigh power DPSS ns amplifier systems
10 Hz0.15 – 20 ns10 JHigh energy systems with temporal pulse shaping (AWG)
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment

A. Ottaviano, T. M. Schindler, K. Zhai, E. Parke, E. Granstedt, M. C. Thompson et al., Review of Scientific Instruments 89 (10), 10C120 (2018). DOI: 10.1063/1.5037101.

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov et al., AIP Advances 8 (10), 105003 (2018). DOI: 10.1063/1.5048288.

Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system

F. Batysta, R. Antipenkov, T. Borger, A. Kissinger, J. T. Green, R. Kananavičius et al., Opt. Lett. 43 (16), 3866-3869 (2018). DOI: 10.1364/OL.43.003866.

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

K. Zhai, T. Schindler, A. Ottaviano, H. Zhang, D. Fallah, J. Wells et al., Review of Scientific Instruments 89 (10), 10C118 (2018). DOI: 10.1063/1.5037327.

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

M. G. Ayele, P. W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik,  Wegrzynski et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 411, 35-43 (2017). DOI: 10.1016/j.nimb.2017.03.082.

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos et al., in X-ray Lasers and Coherent X-ray Sources: Development and Applications, A. Klisnick, and C. S. Menoni, eds. (SPIE, 2017), pp. 1024315. DOI: 10.1117/12.2265984.

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

C. Suzuki, F. Koike, I. Murakami, N. Tamura, S. Sudo, E. Long et al., Journal of Physics: Conference Series 583 (1), 012007 (2015). DOI: 10.1088/1742-6596/583/1/012007.

Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Detection Limit Using a Low-Pressure and Short-Pulse Laser-Induced Plasma Process

Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Applied Spectroscopy 67 (11), 1242-1251 (2013). DOI: 10.1366/13-07131.

Tunable wavelength nanosecond lasers

ModelWavelength rangeRepetition rateLinewidthSpecial feature
192 – 2600 nm100 Hz< 5 cm‑1High, up to 15 mJ pulse energy from OPO. DPSS lasers
210 – 2600 nm1 kHz< 5 cm‑1Broadly tunable kHz pulsed DPSS lasers
335 – 2600 nm1 kHz< 10 cm‑1UV-NIR range DPSS lasers
192 – 2600 nm10 kHz< 3 cm‑1Narrow linewidth at kHz repetition rate. DPSS lasers
2500 – 4475 nm1 kHz< 10 cm‑1Wide IR tuning range at kHz repetition rate. DPSS lasers
192 – 4400 nm20 Hz< 5 cm‑1Wide range of modifications. Flash-lamp pump lasers
650 – 2600 nm100 Hz< 10 cm‑1Tailored for photoacoustic imaging
330 – 2300 nm20 Hz< 10 cm‑1Mobile, tailored for photoacoustic imaging
330 – 2300 nm10 Hz< 10 cm‑1Tailored for photoacoustic imaging
ModelWavelength rangeRepetition rateLinewidthSpecial feature

Downloads

Publications

A fast all-optical 3D photoacoustic scanner for clinical vascular imaging

N. T. Huynh, E. Zhang, O. Francies, F. Kuklis, T. Allen, J. Zhu et al., Nature Biomedical Engineering (2024). DOI: 10.1038/s41551-024-01247-x.

An Investigation of Signal Preprocessing for Photoacoustic Tomography

I. Huen, R. Zhang, R. Bi, X. Li, M. Moothanchery, and M. Olivo, Sensors 23 (1), 510 (2023). DOI: 10.3390/s23010510.

Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer

H. H. Han, S. Kim, J. Kim, W. Park, C. Kim, H. Kim et al., ACS Applied Materials & Interfaces 15 (9), 11609-11620 (2023). DOI: 10.1021/acsami.3c01858.

Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies

W. R. Thompson, H. F. Brecht, V. Ivanov, A. M. Yu, D. S. Dumani, D. J. Lawrence et al., Journal of Biomedical Optics 28 (3), 036001 (2023). DOI: 10.1117/1.JBO.28.3.036001.

Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)

S. Choi, J. Yang, S. Y. Lee, J. Kim, J. Lee, W. J. Kim et al., Advanced Science 10 (1), 2202089 (2023). DOI: 10.1002/advs.202202089.

Fast photoacoustic imaging technology for deep structure information of finger

T. Meng, H. Li, and Y. Liu, in Ninth Symposium on Novel Photoelectronic Detection Technology and Applications, J. Chu, W. Liu, and H. Xu, eds. (SPIE, 2023), pp. 126176E. DOI: 10.1117/12.2666706.

Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

M. Dantuma, F. Lucka, S. C. Kruitwagen, A. Javaherian, L. Alink, R. P. P. van Meerdervoort et al., https://arxiv.org/abs/2308.06754. DOI: 10.48550/arXiv.2308.06754.

LED-based Schlieren system for full-field photoacoustic wave acquisition and image reconstruction

Y. Ojeda‑Morales, D. Hernandez‑Lopez, and G. Martínez‑Ponce, Opt. Continuum 2 (9), 2007-2016 (2023). DOI: 10.1364/OPTCON.498143.

Microfluidic Fabrication of Highly Efficient Hydrogel Optical Fibers for In Vivo Fiber-Optic Applications

G. Fitria, M. Kwon, H. Lee, A. Singh, K. Yoo, Y. Go et al., Advanced Optical Materials 11 (18), 2300453 (2023). DOI: 10.1002/adom.202300453.

Photoacoustic tomography with a model-based approach involving realistic detector properties

P. Warbal, and R. K. Saha, Results in Optics 13, 100528 (2023). DOI: 10.1016/j.rio.2023.100528.

1

2 3 4 5

...

10

Content not found